Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This research explores a novel paradigm for preserving topological segmentations in existing error-bounded lossy compressors. Today's lossy compressors rarely consider preserving topologies such as Morse-Smale complexes, and the discrepancies in topology between original and decompressed datasets could potentially result in erroneous interpretations or even incorrect scientific conclusions. In this paper, we focus on preserving Morse-Smale segmentations in 2D/3D piecewise linear scalar fields, targeting the precise reconstruction of minimum/maximum labels induced by the integral line of each vertex. The key is to derive a series of edits during compression time; the edits are applied to the decompressed data, leading to an accurate reconstruction of segmentations while keeping the error within the prescribed error bound. To this end, we developed a workflow to fix extrema and integral lines alternatively until convergence within finite iterations; we accelerate each workflow component with shared-memory/GPU parallelism to make the performance practical for coupling with compressors. We demonstrate use cases with fluid dynamics, ocean, and cosmology application datasets with a significant acceleration with an NVIDIA A100 GPU.more » « less
-
Atmospheric rivers (ARs) are long, narrow regions of water vapor in the Earth's atmosphere that transport heat and moisture from the tropics to the mid‐latitudes. ARs are often associated with extreme weather events in North America and contribute significantly to water supply and flood risk. However, characterizing ARs has been a major challenge due to the lack of a universal definition and their structural variations. Existing AR detection tools (ARDTs) produce distinct AR boundaries for the same event, making the risk assessment of ARs a difficult task. Understanding these uncertainties is crucial to improving the predictability of AR impacts, including their landfall areas and associated precipitation, which could cause catastrophic flooding and landslides over the coastal regions. In this work, we develop an uncertainty visualization framework that captures boundary and interior uncertainties, i.e., structural variations, of an ensemble of ARs that arise from a set of ARDTs. We first provide a statistical overview of the AR boundaries using the contour boxplots of Whitaker et al. that highlight the structural variations of AR boundaries based on their nesting relationships. We then introduce the topological skeletons of ARs based on Morse complexes that characterize the interior variation of an ensemble of ARs. We propose an uncertainty visualization of these topological skeletons, inspired by MetroSets of Jacobson et al. that emphasizes the agreements and disagreements across the ensemble members. Through case studies and expert feedback, we demonstrate that the two approaches complement each other, and together they could facilitate an effective comparative analysis process and provide a more confident outlook on an AR's shape, area, and onshore impact.more » « less
-
Existing error-bounded lossy compression techniques control the pointwise error during compression to guarantee the integrity of the decompressed data. However, they typically do not explicitly preserve the topological features in data. When performing post hoc analysis with decompressed data using topological methods, preserving topology in the compression process to obtain topologically consistent and correct scientific insights is desirable. In this paper, we introduce TopoSZ, an error-bounded lossy compression method that preserves the topological features in 2D and 3D scalar fields. Specifically, we aim to preserve the types and locations of local extrema as well as the level set relations among critical points captured by contour trees in the decompressed data. The main idea is to derive topological constraints from contour-tree-induced segmentation from the data domain, and incorporate such constraints with a customized error-controlled quantization strategy from the SZ compressor (version 1.4). Our method allows users to control the pointwise error and the loss of topological features during the compression process with a global error bound and a persistence threshold.more » « less
-
Merge trees are a type of topological descriptors that record the connectivity among the sublevel sets of scalar fields. They are among the most widely used topological tools in visualization. In this paper, we are interested in sketching a set of merge trees using techniques from matrix sketching. That is, given a large set T of merge trees, we would like to find a much smaller set of basis trees S such that each tree in T can be approximately reconstructed from a linear combination of merge trees in S. A set of high-dimensional vectors can be approximated via matrix sketching techniques such as principal component analysis and column subset selection. However, until now, there has not been any work on sketching a set of merge trees. We develop a framework for sketching a set of merge trees that combines matrix sketching with tools from optimal transport. In particular, we vectorize a set of merge trees into high-dimensional vectors while preserving their structures and structural relations. We demonstrate the applications of our framework in sketching merge trees that arise from time-varying scientific simulations. Specifically, our framework obtains a set of basis trees as representatives that capture the “modes” of physical phenomena for downstream analysis and visualization.more » « less
-
Existing error-bounded lossy compression techniques control the pointwise error during compression to guarantee the integrity of the decompressed data. However, they typically do not explicitly preserve the topological features in data. When performing post hoc analysis with decompressed data using topological methods, preserving topology in the compression process to obtain topologically consistent and correct scientific insights is desirable. In this paper, we introduce TopoSZ, an error-bounded lossy compression method that preserves the topological features in 2D and 3D scalar fields. Specifically, we aim to preserve the types and locations of local extrema as well as the level set relations among critical points captured by contour trees in the decompressed data. The main idea is to derive topological constraints from contour-tree-induced segmentation from the data domain, and incorporate such constraints with a customized error-controlled quantization strategy from the SZ compressor (version 1.4). Our method allows users to control the pointwise error and the loss of topological features during the compression process with a global error bound and a persistence threshold.more » « less
-
Critical point tracking is a core topic in scientific visualization for understanding the dynamic behavior of time-varying vector field data. The topological notion of robustness has been introduced recently to quantify the structural stability of critical points, that is, the robustness of a critical point is the minimum amount of perturbation to the vector field necessary to cancel it. A theoretical basis has been established previously that relates critical point tracking with the notion of robustness, in particular, critical points could be tracked based on their closeness in stability, measured by robustness, instead of just distance proximity within the domain. However, in practice, the computation of classic robustness may produce artifacts when a critical point is close to the boundary of the domain; thus, we do not have a complete picture of the vector field behavior within its local neighborhood. To alleviate these issues, we introduce a multilevel robustness framework for the study of 2D time-varying vector fields. We compute the robustness of critical points across varying neighborhoods to capture the multiscale nature of the data and to mitigate the boundary effect suffered by the classic robustness computation. We demonstrate via experiments that such a new notion of robustness can be combined seamlessly with existing feature tracking algorithms to improve the visual interpretability of vector fields in terms of feature tracking, selection and comparison for large-scale scientific simulations. We observe, for the first time, that the minimum multilevel robustness is highly correlated with physical quantities used by domain scientists in studying a real-world tropical cyclone dataset. Such an observation helps to increase the physical interpretability of robustness.more » « less
An official website of the United States government

Full Text Available